胶原在心肌梗死后心脏重构中的研究进展
姜晓宇1付迪1陈雪英2,3申程2,3甘立军2,3
272067济宁医学院临床医学院1;272029济宁医学院附属医院心内科2, 济宁市心血管疾病诊疗重点实验室3
Research progress of collagen in cardiac remodeling after myocardial infarction
Jiang Xiaoyu1, Fu Di1, Chen Xueying2,3, Shen Cheng2,3, Gan Lijun2,3
1College of Clinical Medicine, Jining Medical University, Jining 272067, China; 2Department of Cardiology, 3Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Disease, Affiliated Hospital of Jining Medical University, Jining 272029, China
摘要 心肌胶原是构成心肌细胞外基质的主要成分,维持心脏结构和心肌细胞功能的完整性,并在心肌梗死后心脏功能的变化和心脏重构中起着重要作用。心肌梗死是常见的心血管疾病,因此探讨胶原蛋白成分在心肌梗死后承担的功能十分必要。心肌胶原受转化生长因子-β1/Smads信号通路、神经内分泌以及多种调控分子影响,不同类型胶原在心脏中承担着不同的作用以维持心脏正常功能,在心肌梗死后大部分心肌胶原表达升高,也有部分胶原,比如Ⅴ型胶原因消耗比例下降,进而导致瘢痕面积增大,因此,适合的胶原比例是维持心脏正常功能的前提。笔者就心肌胶原的功能、心肌梗死后心肌胶原的变化、调控心肌胶原变化的机制以及对心肌胶原可产生影响的药物研究进行综述。
关键词 :
胶原 ,
心肌梗死 ,
心室重构 ,
心肌纤维化 ,
信号通路
Abstract :Myocardial collagen is the primary component of the extracellular matrix in the cardiomyocardium. It is responsible for maintaining the integrity of the heart structure and cardiomyocyte function and plays an important role in the change of cardiac function and cardiac remodeling after myocardial infarction. Myocardial infarction is a common cardiovascular disease, so it is essential to explore the function of collagen components after myocardial infarction. Myocardial collagen is affected by transforming growth factor-β1/Smads signaling pathway, neuroendocrine and a variety of regulatory molecules. Different types of collagen in the heart serve distinct functions to maintain the normal function of the heart. After myocardial infarction, most of the myocardial collagen exhibits increased expression. However, some collagen, specifically type V collagen, can contribute to an increase in scar area due to its decreasing consumption proportion. Therefore, maintaining an appropriate ratio of collagen is the precondition of maintaining normal heart function. The author reviews the functions of myocardial collagen, the alterations in myocardial collagen after myocardial infarction, the mechanisms of regulating changes in myocardial collagen, and the pharmaceutical interventions that can affect myocardial collagen.
Key words :
Collagen
Myocardial infarction
Ventricular remodeling
Myocardial fibrosis
Signaling pathway
收稿日期: 2023-07-27
基金资助: 国家自然科学基金(82000269);山东省中医药科技项目重点项目(Z-2022081)
通讯作者:
甘立军, Email: jyfydoctor@email.cn
[1]Lv S,Lu C,Li M,et al.The dynamic changes in myocardial collagen metabolism in experimental autoimmune myocarditis rats[J].Hellenic J Cardiol,2018,59(4):234-237.DOI:10.1016/j.hjc.2017.12.006.
[2]Ricard-Blum S.The collagen family[J].Cold Spring Harb Perspect Biol,2011,3(1):a004978.DOI:10.1101/cshperspect.a004978.
[3]Hanna A,Shinde AV,Li R,et al. Collagen denaturation in the infarcted myocardium involves temporally distinct effects of MT1-MMP-dependent proteolysis and mechanical tension[J].Matrix Biol,2021(99):18-42.DOI:10.1016/j.matbio.2021.05.005.
[4]Steffensen LB,Rasmussen LM.A role for collagen type IV in cardiovascular disease?[J].Am J Physiol Heart Circ Physiol,2018,315(3):H610-H625.DOI:10.1152/ajpheart.00070.2018.
[5]Rusu M,Hilse K,Schuh A,et al. Biomechanical assessment of remote and postinfarction scar remodeling following myocardial infarction[J].Sci Rep,2019,9(1):16744.DOI:10.1038/s41598-019-53351-7.
[6]Sadri G,Fischer AG,Brittian KR,et al.Collagen type XIX regulates cardiac extracellular matrix structure and ventricular function[J].Matrix Biol,2022(109):49-69.DOI:10.1016/j.matbio.2022.03.007.
[7]Singh D,Rai V,Agrawal DK.Regulation of collagen I and collagen III in tissue injury and regeneration[J].Cardiol Cardiovasc Med,2023,7(1):5-16.DOI:10.26502/fccm.92920302.
[8]Sudhakar A, Boosani CS. Signaling mechanisms of endogenous angiogenesis inhibitors derived from type IV collagen[J].Gene Regul Syst Bio,2007(1):217-226.DOI:10.4137/grsb.s345.
[9]Colorado PC,Torre A,Kamphaus G,et al.Anti-angiogenic cues from vascular basement membrane collagen[J].Cancer Res,2000,60(9):2520-2526.
[10]Yokota T,McCourt J,Ma F,et al.Type V collagen in scar tissue regulates the size of scar after heart injury[J].Cell,2020,182(3):545-562.e23.DOI:10.1016/j.cell.2020.06.030.
[11]Radhiga T,Senthil S,Sundaresan A,et al.Ursolic acid modulates MMPs,collagen-I,α-SMA,and TGF-β expression in isoproterenol-induced myocardial infarction in rats[J].Hum Exp Toxicol,2019,38(7):785-793.DOI:10.1177/0960327119842620.
[12]Frangogiannis NG.Pathophysiology of myocardial infarction[J].Compr Physiol,2015,5(4):1841-1875.DOI:10.1002/cphy.c150006.
[13]Yang HX,Xu GR,Zhang C,et al.The aqueous extract of Gentianella acuta improves isoproterenol-induced myocardial fibrosis via inhibition of the TGF-β1/Smads signaling pathway[J].Int J Mol Med,2020,45(1):223-233.DOI:10.3892/ijmm.2019.4410.
[14]Li J,Ge F,Wuken S,et al.Zerumbone,a humulane sesquiterpene from Syringa pinnatifolia,attenuates cardiac fibrosis by inhibiting of the TGF-β1/Smad signaling pathway after myocardial infarction in mice[J].Phytomedicine,2022(100):154078.DOI:10.1016/j.phymed.2022.154078.
[15]Venugopal H,Hanna A,Humeres C,et al.Properties and functions of fibroblasts and myofibroblasts in myocardial infarction[J].Cells,2022,11(9):1386.DOI:10.3390/cells11091386.
[16]Gao L,Wang LY,Liu ZQ,et al.TNAP inhibition attenuates cardiac fibrosis induced by myocardial infarction through deactivating TGF-β1/Smads and activating P53 signaling pathways[J].Cell Death Dis,2020,11(1):44.DOI:10.1038/s41419-020-2243-4.
[17]Kuhn TC,Knobel J,Burkert-Rettenmaier S,et al.Secretome analysis of cardiomyocytes identifies PCSK6 (proprotein convertase subtilisin/kexin type (6) as a novel player in cardiac remodeling after myocardial infarction[J].Circulation,2020,141(20):1628-1644.DOI:10.1161/CIRCULATIONAHA.119.044914.
[18]Schumacher D,Alampour-Rajabi S,Ponomariov V,et al.Cardiac FGF23:new insights into the role and function of FGF23 after acute myocardial infarction[J].Cardiovasc Pathol,2019(40):47-54.DOI:10.1016/j.carpath.2019.02.001.
[19]Pollard CM,Desimine VL,Wertz SL,et al.Deletion of osteopontin enhances β-adrenergic receptor-dependent anti-fibrotic signaling in cardiomyocytes[J].Int J Mol Sci,2019,20(6):1396.DOI:10.3390/ijms20061396.
[20]Du Y,Demillard LJ,Ren J.Catecholamine-induced cardiotoxicity:a critical element in the pathophysiology of stroke-induced heart injury[J].Life Sci,2021(287):120106.DOI:10.1016/j.lfs.2021.120106.
[21]Wu Y,Liu Y,Pan Y,et al.MicroRNA-135a inhibits cardiac fibrosis induced by isoproterenol via TRPM7 channel[J].Biomed Pharmacother,2018(104):252-260.DOI:10.1016/j.biopha.2018.04.157.
[22]Hu G,Ding X,Gao F,et al.Calcium and integrin binding protein 1 (CIB1) induces myocardial fibrosis in myocardial infarction via regulating the PI3K/Akt pathway[J].Exp Anim,2022,71(1):1-13.DOI:10.1538/expanim.21-0063.
[23]Zhang H,Zhang P,Long CD,et al.m6A methyltransferase METTL3 promotes retinoblastoma progression via PI3K/AKT/mTOR pathway[J].J Cell Mol Med,2020,24(21):12368-12378.DOI:10.1111/jcmm.15736.
[24]Meng F,Liu Y,Chen Q,et al.METTL3 contributes to renal ischemia-reperfusion injury by regulating Foxd1 methylation[J].Am J Physiol Renal Physiol,2020,319(5):F839-F847.DOI:10.1152/ajprenal.00222.2020.
[25]Song H,Song SX,Cheng M,et al.METTL3-mediated m6A RNA methylation promotes the anti-tumour immunity of natural killer cells [J].Nat Commun,2021,12(1):5522.DOI:10.1038/s41467-021-25803-0.
[26]Wang H,Xu B,Shi J.N6-methyladenosine METTL3 promotes the breast cancer progression via targeting Bcl-2[J].Gene,2020(722):144076.DOI:10.1016/j.gene.2019.144076.
[27]Lee H,Bao S,Qian Y,et al.Stage-specific requirement for Mettl3-dependent m(6)A mRNA methylation during haematopoietic stem cell differentiation[J].Nat Cell Biol,2019,21(6):700-709.DOI:10.1038/s41556-019-0318-1.
[28]Li XZ,Yuan BC,Lu M,et al.The methyltransferase METTL3 negatively regulates nonalcoholic steatohepatitis (NASH) progression[J].Nat Commun,2021,12(1):7213.DOI:10.1038/s41467-021-27539-3.
[29]Wang X,Li Y,Li J,et al.Mechanism of METTL3-mediated m(6)A modification in cardiomyocyte pyroptosis and myocardial ischemia-reperfusion injury[J].Cardiovasc Drugs Ther,2023,37(3):435-448.DOI:10.1007/s10557-021-07300-0.
[30]Zhao K,Yang C,Zhang J,et al.METTL3 improves cardiomyocyte proliferation upon myocardial infarction via upregulating miR-17-3p in a DGCR8-dependent manner[J].Cell Death Disco,2021,7(1):291.DOI:10.1038/s41420-021-00688-6.
[31]Dorn LE,Lasman L,Chen J,et al.The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy[J].Circulation,2019,139(4):533-545.DOI:10.1161/CIRCULATIONAHA.118.036146.
[32]Li T,Zhuang Y,Yang W, et al. Silencing of METTL3 attenuates cardiac fibrosis induced by myocardial infarction via inhibiting the activation of cardiac fibroblasts[J].FASEB J,2021,35(2):e21162.DOI:10.1096/fj.201903169R.
[33]Li G,Zhao C,Fang S.SGLT2 promotes cardiac fibrosis following myocardial infarction and is regulated by miR-141[J].Exp Ther Med,2021,22(1):715.DOI:10.3892/etm.2021.10147.
[34]Wang C,Zhang C,Liu L,et al.Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury[J].Mol Ther,2017,25(1):192-204.DOI:10.1016/j.ymthe.2016.09.001.
[35]Li Y,Duan JZ,He Q, et al. miR-155 modulates high glucose-induced cardiac fibrosis via the Nrf2/HO-1 signaling pathway[J].Mol Med Rep,2020,22(5):4003-4016.DOI:10.3892/mmr.2020.11495.
[36]Wang X,Khalil RA.Matrix metalloproteinases,vascular remodeling,and vascular disease[J].Adv Pharmacol,2018(81):241-330.DOI:10.1016/bs.apha.2017.08.002.
[37]Bayrakci N,zkan G,Akpinar S,et al.Procollagen C-proteinase enhancer-1 and renal failure in multiple myeloma[J].Int Urol Nephrol,2022,54(11):3033-3038.DOI:10.1007/s11255-022-03378-z.
[38]Lagoutte P, Bettler E, Vadon-Le Goff S, et al. Procollagen C-proteinase enhancer-1 (PCPE-1),a potential biomarker and therapeutic target for fibrosis[J].Matrix Biol Plus,2021(11):100062.DOI:10.1016/j.mbplus.2021.100062.
[39]Reichert K,Pereira do Carmo HR,Galluce Torina A,et al.Atorvastatin improves ventricular remodeling after myocardial infarction by interfering with collagen metabolism[J].PLoS One,2016,11(11):e0166845.DOI:10.1371/journal.pone.0166845.
[40]Li X,Wang G,Qi LM,et al.Aspirin reduces cardiac interstitial fibrosis by inhibiting Erk1/2-Serpine 2 and P-Akt signalling pathways[J].Cell Physiol Biochem,2018,45(5):1955-1965.DOI:10.1159/000487972.
[41]Zhang Y,Lin X,Chu Y,et al.Dapagliflozin:a sodium-glucose cotransporter 2 inhibitor,attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling[J].Cardiovasc Diabetol,2021,20(1):121.DOI:10.1186/s12933-021-01312-8.
[42]Ma J,Yin C,Ma S,et al.Shensong Yangxin capsule reduces atrial fibrillation susceptibility by inhibiting atrial fibrosis in rats with post-myocardial infarction heart failure[J].Drug Des Devel Ther,2018(12):3407-3418.DOI:10.2147/DDDT.S182834.
[43]Ma S,Ma J,Guo L,et al.Tongguan capsule-derived herb reduces susceptibility to atrial fibrillation by inhibiting left atrial fibrosis via modulating cardiac fibroblasts[J].J Cell Mol Med,2019,23(2):1197-1210.DOI:10.1111/jcmm.14022.
[44]Yang Y,Li J,Rao T,et al.The role and mechanism of hyperoside against myocardial infarction in mice by regulating autophagy via NLRP1 inflammation pathway[J].J Ethnopharmacol,2021(276):114187.DOI:10.1016/j.jep.2021.114187.
[45]Tan Z,Jiang X,Zhou W,et al.Taohong siwu decoction attenuates myocardial fibrosis by inhibiting fibrosis proliferation and collagen deposition via TGFBR1 signaling pathway[J].J Ethnopharmacol,2021(270):113838.DOI:10.1016/j.jep.2021.113838.
[46]Li X,Xiang N,Wang Z.Ginsenoside Rg2 attenuates myocardial fibrosis and improves cardiac function after myocardial infarction via AKT signaling pathway[J].Biosci Biotechnol Biochem,2020,84(11):2199-2206.DOI:10.1080/09168451.2020.1793292.
[47]Li M,Tan H,Gao T,et al.Gypensapogenin I ameliorates isoproterenol (ISO)-induced myocardial damage through regulating the TLR4/NF-κB/NLRP3 pathway[J].Molecules,2022,27(16).DOI:10.3390/molecules27165298.
[48]Yang J,Wang B,Li N,et al.Salvia miltiorrhiza and carthamus tinctorius extract prevents cardiac fibrosis and dysfunction after myocardial infarction by epigenetically inhibiting Smad3 expression[J].Evid Based Complement Alternat Med,2019(2019):6479136.DOI:10.1155/2019/6479136.
[49]Ni T,Huang X,Pan S,et al.Dihydrolycorine attenuates cardiac fibrosis and dysfunction by downregulating runx1 following myocardial infarction[J].Oxid Med Cell Longev,2021(2021):8528239.DOI:10.1155/2021/8528239.
[50]Zhang G,Zhang X,Li D,et al.Long-term oral atazanavir attenuates myocardial infarction-induced cardiac fibrosis[J].Eur J Pharmacol,2018(828):97-102.DOI:10.1016/j.ejphar.2018.03.041.
[51]Chen P,Zhou D,Liu Y,et al.Peiminine inhibits myocardial injury and fibrosis after myocardial infarction in rats by regulating mitogen-activated protein kinase pathway[J].Korean J Physiol Pharmacol,2022,26(2):87-94.DOI:10.4196/kjpp.2022.26.2.87.
[52]Gallet R,Dawkins J,Valle J,et al.Exosomes secreted by cardiosphere-derived cells reduce scarring,attenuate adverse remodelling,and improve function in acute and chronic porcine myocardial infarction[J].Eur Heart J,2017,38(3):201-211.DOI:10.1093/eurheartj/ehw240.
[53]Jung M,Ma YG,Iyer RP,et al.IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation[J].Basic Res Cardiol,2017,112(3):33.DOI:10.1007/S00395-017-0622-5.
[1]
孔倩 白冠男 周瑜 闫波. 组织蛋白酶B基因启动子多态性与急性心肌梗死发病的关系 [J]. 中华诊断学电子杂志, 2022, 10(3): 171-176.
[2]
左汉恒 李银平 张程征 朱文雅. 酷似扩张型心肌病的急性心肌梗死诊断特征并文献复习 [J]. 中华诊断学电子杂志, 2022, 10(2): 88-93.
[3]
颜凡辉 李颖 詹景冬 郭方明 赵英杰 赵明俐 王阳 张艳芬. 缺血后处理对急性心肌梗死患者血清神经生长因子和心肌梗死面积的影响 [J]. 中华诊断学电子杂志, 2020, 8(4): 248-252.
[4]
吕永楠 李迪 李艳. 基于随机森林的男性急性心肌梗死诊断模型建立及验证 [J]. 中华诊断学电子杂志, 2019, 7(4): 233-238.
[5]
戴雯1魏广和1张韶辉2赵新1代姗姗1张娜娜2 . 以问题为基础学习结合模拟标准化病人教学模式在急性心肌梗死诊断教学中的应用 [J]. 中华诊断学电子杂志, 2019, 7(4): 284-288.
[6]
宋长广 邢学新 陈洪山 张立中. 心肌损伤标志物联合检测在急性心肌梗死早期诊断中的价值 [J]. 中华诊断学电子杂志, 2019, 7(1): 26-30.
[7]
赵英杰 李颖 颜凡辉 郭方明 赵明俐 王贵亮 詹景冬 王阳 张艳芬. 急性心肌梗死缺血后处理对患者发生心肌梗死后心力衰竭的影响 [J]. 中华诊断学电子杂志, 2018, 6(3): 185-188.
[8]
戚厚兴 崔芬 张金国 王微 谭洪勇 魏广和. 首发与再发急性心肌梗死患者先兆诱因及危险因素的临床研究 [J]. 中华诊断学电子杂志, 2017, 5(2): 98-.
[9]
张楠 孙萌 王瑞华 王睿. 心型脂肪酸结合蛋白联合圆周应变早期诊断非ST段抬高型心肌梗死的临床价值 [J]. 中华诊断学电子杂志, 2017, 5(2): 86-.
[10]
韩瑞娟1孙凯1,2李坤成3赵瑞平1李文欢3白栓成4王君艳5李洪宇1卢耀军1. 第二代双源CT双能量心肌灌注成像对心肌梗死的诊断价值 [J]. 中华诊断学电子杂志, 2015, 3(3): 173-178.