细胞间相互作用及代谢微环境在动脉钙化中的
作用机制研究进展
冯盼1梁秋华2
272067济宁医学院临床医学院1;272029济宁医学院附属医院内分泌遗传代谢科2
Research progress on the mechanism of intercellular communication and metabolic microenvironment in arterial calcification
Feng Pan1, Liang Qiuhua2
1College of Clinical Medicine, Jining Medical University, Jining 272067, China; 2Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining 272029 China
摘要 动脉钙化是一种主要表现为钙磷等矿物质易位沉积于动脉管壁的病理过程,常继发于多种疾病,细胞间通信及相互作用在动脉钙化的发展过程中发挥着重要作用。血管平滑肌细胞表型转换尽管被认为是动脉钙化的主要特征,但导致其收缩表型丧失和驱使钙化表型转化的机制目前还不完全清楚。本综述旨在总结近年来血管平滑肌细胞表型转换及与不同细胞之间相互作用和体内代谢微环境在动脉钙化发展研究中的最新进展,以进一步了解动脉钙化的相关机制。
关键词 :
动脉 ,
血管钙化 ,
细胞 ,
平滑肌 ,
破骨细胞 ,
内皮细胞
Abstract :Arterial calcification is a pathological process characterized by the translocation of minerals such as calcium and phosphorus onto the arterial wall, which is often secondary to a variety of diseases. Intercellular communication and interaction play an important role in the development of arterial calcification. Although the phenotypic transition of vassular smooth muscle cells is considered to be a main feature of arterial calcification, the mechanism leading to the loss of contractile phenotype and driving the phenotypic transformation of calcification is not fully understood. The purpose of this review is to summarize the latest progress in the study of phenotypic transformation of vascular smooth muscle cells, their communication with different cells, and the metabolic microenvironment in vivo in the development of arterial calcification, so as to further understand the mechanism of arterial calcification.
Key words :
Arteries
Vascular calcification
Myocytes, smooth muscle
Osteoclasts
Endothelial cells
收稿日期: 2024-02-24
基金资助: 山东省自然科学基金(ZR2019MH087)
通讯作者:
梁秋华, Email: liangqiuhua_meta@163.com
[1]Li X,Liu A,Xie C,et al.The transcription factor GATA6 accelerates vascular smooth muscle cell senescence-related arterial calcification by counteracting the role of anti-aging factor SIRT6 and impeding DNA damage repair[J].Kidney Int,2024,105(1):115-131.DOI:10.1016/j.kint.2023.09.028.
[2]Petsophonsakul P,Burgmaier M,Willems B,et al.Nicotine promotes vascular calcification via intracellular Ca2+-mediated,Nox5-induced oxidative stress,and extracellular vesicle release in vascular smooth muscle cells[J].Cardiovasc Res,2022,118(9):2196-2210.DOI:10.1093/cvr/cvab244.
[3]Reynolds JL, Joannides AJ, Skepper JN,et al.Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations:a potential mechanism for accelerated vascular calcification in ESRD[J].J Am Soc Nephrol,2004,15(11):2857-2867.DOI:10.1097/01.ASN.0000141960.01035.28.
[4]Hutcheson JD,Goettsch C,Bertazzo S,et al.Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques[J].Nat Mater,2016,15(3):335-343.DOI:10.1038/nmat4519.
[5]Bck M,Michel JB.From organic and inorganic phosphates to valvular and vascular calcifications[J].Cardiovasc Res,2021,117(9):2016-2029.DOI:10.1093/cvr/cvab038.
[6]Liu Q,Luo Y,Zhao Y,et al.Nano-hydroxyapatite accelerates vascular calcification via lysosome impairment and autophagy dysfunction in smooth muscle cells[J].Bioact Mater,2022(8):478-493.DOI:10.1016/j.bioactmat.2021.06.004.
[7]Lanzer P,Hannan FM,Lanzer JD,et al.Medial arterial calcification:JACC state-of-the-art review[J].J Am Coll Cardiol,2021,78(11):1145-1165.DOI:10.1016/j.jacc.2021.06.049.
[8]Kraler S,Blaser MC,Aikawa E,et al.Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy[J].Eur Heart J,2022,43(7):683-697.DOI:10.1093/eurheartj/ehab757.
[9]Crescitelli R,Lsser C,Ltvall J.Isolation and characterization of extracellular vesicle subpopulations from tissues[J].Nat Protoc,2021,16(3):1548-1580.DOI:10.1038/s41596-020-00466-1.
[10]Koide T,Mandai S,Kitaoka R,et al.Circulating extracellular vesicle-propagated microRNA signature as a vascular calcification factor in chronic kidney disease[J].Circ Res,2023,132(4):415-431.DOI:10.1161/CIRCRESAHA.122.321939.
[11]Rykaczewska U,Zhao Q,Saliba-Gustafsson P,et al.Plaque evaluation by ultrasound and transcriptomics reveals BCLAF1 as a regulator of smooth muscle cell lipid transdifferentiation in atherosclerosis[J].Arterioscler Thromb Vasc Biol,2022,42(5):659-676.DOI:10.1161/ATVBAHA.121.317018.
[12]Wirka RC,Wagh D,Paik DT,et al.Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis[J].Nat Med,2019,25(8):1280-1289.DOI:10.1038/s41591-019-0512-5.
[13]Furmanik M,Chatrou M,van Gorp R,et al.Reactive oxygen-forming Nox5 links vascular smooth muscle cell phenotypic switching and extracellular vesicle-mediated vascular calcification[J].Circ Res,2020,127(7):911-927.DOI:10.1161/CIRCRESAHA.119.316159.
[14]Pan W,Liang JW,Tang HL,et al.Differentially expressed microRNA profiles in exosomes from vascular smooth muscle cells associated with coronary artery calcification[J].Int J Biochem Cell Biol,2020(118):105645.DOI:10.1016/j.biocel.2019.105645.
[15]Yu H,Douglas HF,Wathieu D,et al.Diabetes is accompanied by secretion of pro-atherosclerotic exosomes from vascular smooth muscle cells[J].Cardiovasc Diabetol,2023,22(1):112.DOI:10.1186/s12933-023-01833-4.
[16]Li Z,Xia H,Sharp TR,et al.Hydrogen sulfide modulates endothelial-mesenchymal transition in heart failure[J].Circ Res,2023,132(2):154-166.DOI:10.1161/CIRCRESAHA.122.321326.
[17]Feenstra L,Kutikhin AG,Shishkova DK,et al.Calciprotein particles induce endothelial dysfunction by impairing endothelial nitric oxide metabolism[J].Arterioscler Thromb Vasc Biol,2023,43(3):443-455.DOI:10.1161/ATVBAHA.122.318420.
[18]Bouabdallah J,Zibara K,Issa H,et al.Endothelial cells exposed to phosphate and indoxyl sulphate promote vascular calcification through interleukin-8 secretion[J].Nephrol Dial Transplant,2019,34(7):1125-1134.DOI:10.1093/ndt/gfy325.
[19]Zhao XK,Zhu MM,Wang SN,et al.Transcription factor 21 accelerates vascular calcification in mice by activating the IL-6/STAT3 signaling pathway and the interplay between VSMCs and ECs[J].Acta Pharmacol Sin,2023,44(8):1625-1636.DOI:10.1038/s41401-023-01077-8.
[20]Han X,Sakamoto N,Tomita N,et al.Influence of TGF-β1 expression in endothelial cells on smooth muscle cell phenotypes and MMP production under shear stress in a co-culture model[J].Cytotechnology,2019,71(2):489-496.DOI:10.1007/s10616-018-0268-7.
[21]Rukov JL,Gravesen E,Mace ML,et al.Effect of chronic uremia on the transcriptional profile of the calcified aorta analyzed by RNA sequencing[J].Am J Physiol Renal Physiol,2016,310(6):F477-F491.DOI:10.1152/ajprenal.00472.2015.
[22]Chang XY, Hao JB, Wang XZ, et al. The role of AIF-1 in the aldosterone-induced vascular calcification related to chronic kidney disease:evidence from mice model and cell co-culture model[J].Front Endocrinol (Lausanne),2022(13):917356.DOI:10.3389/fendo.2022.917356.
[23]Guo B,Shan SK,Xu F,et al.Protective role of small extracellular vesicles derived from HUVECs treated with AGEs in diabetic vascular calcification[J].J Nanobiotechnology,2022,20(1):334.DOI:10.1186/s12951-022-01529-z.
[24]Lin X,Li S,Wang YJ,et al.Exosomal Notch3 from high glucose-stimulated endothelial cells regulates vascular smooth muscle cells calcification/aging[J].Life Sci,2019(232):116582.DOI:10.1016/j.lfs.2019.116582.
[25]Freise C,Querfeld U,Ludwig A,et al.Uraemic extracellular vesicles augment osteogenic transdifferentiation of vascular smooth muscle cells via enhanced AKT signalling and PiT-1 expression[J].J Cell Mol Med,2021,25(12):5602-5614.DOI:10.1111/jcmm.16572.
[26]Qin Z,Li YP,Li JM,et al.Exosomal STAT1 derived from high phosphorus-stimulated vascular endothelial cells induces vascular smooth muscle cell calcification via the Wnt/β-catenin signaling pathway[J].Int J Mol Med,2022,50(6):139.DOI:10.3892/ijmm.2022.5195.
[27]Lin X,Shan SK,Xu F,et al.The crosstalk between endothelial cells and vascular smooth muscle cells aggravates high phosphorus-induced arterial calcification[J].Cell Death Dis,2022,13(7):650.DOI:10.1038/s41419-022-05064-5.
[28]Sun JX,Chang TF,Li MH,et al.SNAI1,an endothelial-mesenchymal transition transcription factor,promotes the early phase of ocular neovascularization[J].Angiogenesis,2018,21(3):635-652.DOI:10.1007/s10456-018-9614-9.
[29]Sánchez-Duffhues G, García de Vinusea A, van de Pol V, et al.Inflammation induces endothelial-to-mesenchymal transition and promotes vascular calcification through downregulation of BMPR2[J].J Pathol,2019,247(3):333-346.DOI:10.1002/path.5193.
[30]Deng GR,Zhang LY,Wang CL,et al.AGEs-RAGE axis causes endothelial-to-mesenchymal transition in early calcific aortic valve disease via TGF-β1 and BMPR2 signaling[J].Exp Gerontol,2020(141):111088.DOI:10.1016/j.exger.2020.111088.
[31]Liang GZ,Wang SP,Shao JC,et al.Tenascin-X mediates flow-induced suppression of endMT and atherosclerosis[J].Circ Res,2022,130(11):1647-1659.DOI:10.1161/CIRCRESAHA.121.320694.
[32]Zhu XL,Wang YY,Soaita I,et al. Acetate controls endothelial-to-mesenchymal transition[J].Cell Metab,2023,35(7):1163-1178.DOI:10.1016/j.cmet.2023.05.010.
[33]Zhao HY,Zhang YY,Xing T,et al.M2 macrophages,but not M1 macrophages,support megakaryopoiesis by upregulating PI3K-AKT pathway activity[J].Signal Transduct Target Ther,2021,6(1):234.DOI:10.1038/s41392-021-00627-y.
[34]Sakamoto A,Kawakami R,Mori M,et al.CD163+ macrophages restrain vascular calcification,promoting the development of high-risk plaque[J].JCI Insight,2023,8(5):e154922.DOI:10.1172/jci.insight.154922.
[35]Basatemur GL,Jrgensen HF,Clarke M,et al.Vascular smooth muscle cells in atherosclerosis[J].Nat Rev Cardiol,2019,16(12):727-744.DOI:10.1038/s41569-019-0227-9.
[36]Kawakami R, Katsuki S, Travers R, et al. S100A9-RAGE axis accelerates formation of macrophage-mediated extracellular vesicle microcalcification in diabetes mellitus[J].Arterioscler Thromb Vasc Biol,2020,40(8):1838-1853.DOI:10.1161/ATVBAHA.118.314087.
[37]Cao JS,Chen C,Chen Q,et al.Extracellular vesicle miR-32 derived from macrophage promotes arterial calcification in mice with type 2 diabetes via inhibiting VSMC autophagy[J].J Transl Med,2022,20(1):307.DOI:10.1186/s12967-022-03502-8.
[38]Li Q,Zhang CL,Shi J,et al.High-phosphate-stimulated macrophage-derived exosomes promote vascular calcification via let-7b-5p/TGFBR1 axis in chronic kidney disease[J].Cells,2022,12(1):161.DOI:10.3390/cells12010161.
[39]Yaker L,Tebani A,Lesueur C,et al.Extracellular vesicles from LPS-treated macrophages aggravate smooth muscle cell calcification by propagating inflammation and oxidative stress[J].Front Cell Dev Biol,2022(10):823450.DOI:10.3389/fcell.2022.823450.
[40]Chinetti-Gbaguidi G,Daoudi M,Rosa M,et al.Human alternative macrophages populate calcified areas of atherosclerotic lesions and display impaired RANKL-induced osteoclastic bone resorption activity[J].Circ Res,2017,121(1):19-30.DOI:10.1161/CIRCRESAHA.116.310262.
[41]Jeong S,Lee BS,Jung SE,et al.A low concentration of citreoviridin prevents both intracellular calcium deposition in vascular smooth muscle cell and osteoclast activation in vitro[J].Molecules,2023,28(4):1693.DOI:10.3390/molecules28041693.
[42]Garimella R,Tague SE,Zhang JH,et al.Expression and synthesis of bone morphogenetic proteins by osteoclasts: a possible path to anabolic bone remodeling[J].J Histochem Cytochem,2008,56(6):569-577.DOI:10.1369/jhc.2008.950394.
[43]Sun Z,Zhang LL,Yin K,et al.SIRT3-and FAK-mediated acetylation-phosphorylation crosstalk of NFATc1 regulates Nε-carboxymethyl-lysine-induced vascular calcification in diabetes mellitus[J].Atherosclerosis,2023(377):43-59.DOI:10.1016/j.atherosclerosis.2023.06.969.
[44]Zheng MH,Shan SK,Lin X,et al.Vascular wall microenvironment: exosomes secreted by adventitial fibroblasts induced vascular calcification[J].J Nanobiotechnology,2023,21(1):315.DOI:10.1186/s12951-023-02000-3.
[45]Ning WL,Li SH,Yang WG,et al.Blocking exosomal miRNA-153-3p derived from bone marrow mesenchymal stem cells ameliorates hypoxia-induced myocardial and microvascular damage by targeting the ANGPT1-mediated VEGF/PI3k/Akt/eNOS pathway[J].Cell Signal,2021(77):109812.DOI:10.1016/j.cellsig.2020.109812.
[46]Wang ZX,Luo ZW,Li FX,et al.Aged bone matrix-derived extracellular vesicles as a messenger for calcification paradox[J].Nat Commun,2022,13(1):1453.DOI:10.1038/s41467-022-29191-x.
[47]Liu YJ,Guo Y,Bao SM,et al.Bone marrow mesenchymal stem cell-derived exosomal microRNA-381-3p alleviates vascular calcification in chronic kidney disease by targeting NFAT5[J].Cell Death Dis,2022,13(3):278.DOI:10.1038/s41419-022-04703-1.
[48]Luo FW,Guo WK,Liu WH.Exosomes derived from bone marrow mesenchymal stem cells inhibit human aortic vascular smooth muscle cells calcification via the miR-15a/15b/16/NFATc3/OCN axis[J].Biochem Biophys Res Commun,2022(635):65-76.DOI:10.1016/j.bbrc.2022.09.076.
[49]Bao WH,Yang WL,Su CY,et al.Relationship between gut microbiota and vascular calcification in hemodialysis patients[J].Ren Fail,2023,45(1):2148538.DOI:10.1080/0886022X.2022.2148538.
[50]Liu JH,Chen CY,Liu ZZ,et al.Extracellular vesicles from child gut microbiota enter into bone to preserve bone mass and strength[J].Adv Sci (Weinh),2021,8(9):2004831.DOI:10.1002/advs.202004831.
[51]Zhang XL, Li YN, Yang PZ, et al. Trimethylamine-N-Oxide promotes vascular calcification through activation of NLRP3 (nucleotide-binding domain,leucine-rich-containing family,pyrin domain-containing-3) inflammasome and NF-κB (nuclear factor κB) signals[J].Arterioscler Thromb Vasc Biol,2020,40(3):751-765.DOI:10.1161/ATVBAHA.119.313414.
[52]Yan JL,Pan YB,Shao WM,et al.Beneficial effect of the short-chain fatty acid propionate on vascular calcification through intestinal microbiota remodelling[J].Microbiome,2022,10(1):195.DOI:10.1186/s40168-022-01390-0.
[53]Shi XY,Wu HF,Liu YR,et al.Inhibiting vascular smooth muscle cell proliferation mediated by osteopontin via regulating gut microbial lipopolysaccharide:a novel mechanism for paeonol in atherosclerosis treatment[J].Front Pharmacol,2022(13):936677.DOI:10.3389/fphar.2022.936677.
[54]Sun XL,Zheng Y,Xie LZ,et al.Autophagy reduces aortic calcification in diabetic mice by reducing matrix vesicle body-mediated IL-1β release[J].Exp Cell Res,2023,432(2):113803.DOI:10.1016/j.yexcr.2023.113803.
[55]Wei JT,Li ZH,Fan Y,et al.Lactobacillus rhamnosus GG aggravates vascular calcification in chronic kidney disease:a potential role for extracellular vesicles[J].Life Sci,2023(331):122001.DOI:10.1016/j.lfs.2023.122001.
[56]Li FX,Liu JJ,Xu F,et al.Cold exposure protects against medial arterial calcification development via autophagy[J].J Nanobiotechnology,2023,21(1):226.DOI:10.1186/s12951-023-01985-1.
[1]
王文珠 刘建 袁常秀 石亚飞 尤培军. 竖脊肌平面阻滞对非体外循环冠状动脉
旁路移植术中阿片类药物用量的影响 [J]. 中华诊断学电子杂志, 2024, 12(3): 155-159.
[2]
杨麦青 张云香. 胃癌化疗后浆膜腔大B细胞淋巴瘤一例
报道并文献复习 [J]. 中华诊断学电子杂志, 2024, 12(3): 183-187.
[3]
陆天 孙道萍. 调节性B细胞在多发性骨髓瘤中的研究进展 [J]. 中华诊断学电子杂志, 2024, 12(2): 133-137.
[4]
郭方明 赵明俐 颜凡辉 刘萌萌 王阳 赵英杰 刘远航 张艳芬 詹景冬. 光学相干断层成像在急性心肌梗死
冠状动脉分层斑块病变中的应用 [J]. 中华诊断学电子杂志, 2024, 12(2): 73-79.
[5]
娄彦文 李涵 李运鸿 徐萌冉 魏洋行 随蓓蓓. 人参皂苷Rg3对人乳腺癌细胞的代谢活性
及caspase 3、CDK2表达的影响 [J]. 中华诊断学电子杂志, 2024, 12(2): 90-94.
[6]
刘兆全 张芳芳 宋洪浩 王刚 崔明宇. 儿童腹腔炎性肌纤维母细胞瘤的
诊断学特征并文献复习 [J]. 中华诊断学电子杂志, 2024, 12(2): 101-106.
[7]
王林源 熊鑫 杨坤 邓勇志. 基于冠状动脉CT血管成像的影像组学
列线图鉴别诊断易损斑块的价值 [J]. 中华诊断学电子杂志, 2024, 12(1): 1-8.
[8]
计超 向群. 乙酰胆碱受体对急性呼吸窘迫综合征小鼠
T细胞亚群和炎症因子的影响 [J]. 中华诊断学电子杂志, 2024, 12(1): 50-56.
[9]
孟丽君 宋芹 邵莉 李健. 系统性红斑狼疮合并肺动脉高压患者外周血
T淋巴细胞亚群水平变化及临床意义 [J]. 中华诊断学电子杂志, 2024, 12(1): 38-43.
[10]
吕泉龙 史文杰 孙文国. 免疫检查点抑制剂在治疗转移性去势抵抗性
前列腺癌中的研究进展 [J]. 中华诊断学电子杂志, 2024, 12(1): 69-72.
[11]
郭芳芳 李珉珉. 狼疮肾炎无创生物标志物的研究进展 [J]. 中华诊断学电子杂志, 2023, 11(4): 271-275.
[12]
邹艳丽1栾文杰2王淑娟3刘亚琴1初桂芝1李松洋1王好玲1张锦婷1姜鑫1栾泽东1. 早孕期胎儿右位主动脉弓的产前超声
诊断学特征 [J]. 中华诊断学电子杂志, 2023, 11(4): 227-232.
[13]
王昕禹1赵国政1徐娟2刘淑萍1李利1. 腹主动脉瘤腔内修复术后内漏与左肾周
血肿的超声造影诊断特征 [J]. 中华诊断学电子杂志, 2023, 11(4): 239-243.
[14]
王洪军1李朝密2张恒2刘鲲2. 永存正中动脉并正中神经双支变异的
超声诊断特征分析 [J]. 中华诊断学电子杂志, 2023, 11(4): 244-248.
[15]
范茹 刘宇清 胡晓榕 王轶奇 张芬 岑星 卜玉洁 陈俊伟. 系统性红斑狼疮患者长链非编码RNA表达
变化及其与CD8+T细胞相关性研究 [J]. 中华诊断学电子杂志, 2023, 11(3): 184-189.